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This paper summarizes recent work done at the Lawrence Livermore National
Laboratory by the writer on the effects of statistical uncertainty and image
noise in Boltzsann ME inversion. The object of this work is the formulation of a
Theory of Uncertainties which would allow one to compute confidence intervals for
an object parameter near an ME reference value,

1. INTRODUCTION

The Boltzmann ME method resolves an object by
a physical parameter such as deusity, photon
density or power spectrum directly, without |
reference to an underlying probabllity density
for the object parameters. At present, there
appears to be no generally accepted comprehen-
sive theory for accounting both for statisti-
cal uncertainty and measurement noise. Jaynes
has stated [1] that a full Baysian solution is
required, and cited the work of Gull and
Daniell [2]) as a step in that direction.
Herein we offer our version of a "full Baysian
solution.”

2. STATISTICAL UNCERTAINTY

If the image (data) vector T 1s essentially
noiseless (Fig. 1(a)) ona most prabable object
%" is resolved. The statistical uncertainty
of the object X around XE can be grossly de-
scribed by the distribution of entropy H(X)
around Hg,. according to the Conecentration
Theorem [1]. The statistical uncertainty

sxi of any x; around its xTE-valu- as the
number N of building blocks to realize an

object approaches infinity is given by a
Poisson distribution according to Darwin-
Fowler (D-F) theory [3]. This result is
independent of slight relaxation of the
constraint relations between object and image
and therefore will be valid with measurement
noise present. The result also indicates we
may treat object statistical uncertainty
independent of object nolse caused by
measurement noise.

The D-F Theory (s formulated in terms of inte-
gral numbers of building blocks of object pa-
rameter, such as density or photon inten-
ajty. It is not strictly appropriate for
Boltzmann power spectrum analysis, for which
the complex frequency or wave number amplitude
usually does not have positive (or negative)
definite real and Imaginary components [4].
The precise description of statistical uncer-
tainty in ME power spectrum analysis remains
to be developed.

3. QUANTIZATION OF OBJECT VECTOR x.

In order to have the distribution of H(X)

around H_ ., lndependent of scaling, and the
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Figure 1. (a) Object X with statistical un-
certainty (&x)® around ¥E determined by

noiseless image T. (b) Reference object
%*9T(ME) determined by reference image frer.
Each nolsy vector T = T °f + (8T)" yields a

noisy object EME - §r.r . (65)", with the su~

.. perimposed statistical uncertainty (s%)°.

Darwin-Fowler distribution independent of di-
mensioning, one must gquantize X; i.s., intro-
duce a Ax (real) which is the limit of resolu-
tion in X. This is true whether T i3 effac-
tively noiselass or corrupted by measursment
noise. Of course one need not quantize X in

order to obtain an x'E

, Wwith or without mea-
surement noise. The quantization ls required
by the D-F statistics, in terms of integral

numbers of building blocks.

The philosophical implication of quantization
is profound; it implies tha statistical sapread
of object parameter around a reference value
is narrower or broader depending on whether
‘Ax 1s smaller or larger. Therefore, it is
important to evaluate Ax realistically, ac-
cording to the number of degrees of freedom in
an object cell or meaaurement limitations,
apart from limitations imposed by image nolse.

The D-F theory yields the following expression
for the statistical variance of 5:? in
Figure 1(a),

<axhH? 7 (2

- (ax / xTE) (1=1/N) (1)

where N 1s the total number of building blocks
in the object reconstruction. Usually N>>1.

Clearly Ax will affect confidence intervals
ref

for Xy about a reference value xl

4. IMAGE (MEASUREMENT) NOISE

Independent of statistical uncertainty discus-

sed above, the image vector T is usually noisy

around an ME reference value T° °F

1(0)). Each vector T = T8 + (67)" generates

an ME object X T = x7°f

(Figure

+ (60)" with a proba~
bility distribution determined by that for

The ME inversion of the matrix constraint re-

lation

e

-7, M-uEEDH (2)

i{s the generalized inverse (for which we have
a digital algorithm)
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This describes X perturbed from ¥ °{ by mea-
surement noise (5T)" in Figure 1(b), apart
from statistical uncertainty (6;)3. The sta-
tistics of X'T due to (§T)” are determined by

ME -ref =ME

(6x)" = X" - x - g-(x ref

+ 6T
(4)

, T (7

- !-(;ret' frer) Tref

For small aexcursions, the object noise can be
approximated as

()" = LT DY (s

We propose defining the assurance A, that
(Gxi)n {s smaller than a specified number a,;
as
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A (a)) = prob[|(sx)"| 5 a ] (6)

computable from the statistics of (s§T)".

5. TOTAL UNCERTAINTY IN OBJECT PARAMETER, X

According to Figure 1(b), the object vector X
is perturbed from ¥®f by image noise and sta-
tistical uncertainty,

x, = x%0 + (ax )" + (6x,)°

i i i i -

The total variance of Xy 1s, for small image
noise where (5) s appropriate,
rer)z

_ - -y 8,2
<xy=xy > E!. M M, G CBT BT 2 ¢ <(8x )
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Elther (4) or (5) and the Poisson distribution
for (Gxi)s would determine a confidence C,

that x; lay within a specified interval c,
defined as

_ ref
Ciley) = Prob[lx1 x, |

s ci] (8)

6. CONCLUSIONS

The Theory of Uncertainties just outlined ap-
pears to be practical computationally. The
statistical uncertainty ls dependent on the
object parameter quantization, A&x, which must

be realistically chosen. It is reasonable to

define an assurance that an object parameter
i1s cleose to its reference value according to
measurement (image) noise alone and a confi-
dence that the parameter is close to its ref-
erence value according to both noise and sta-

tistical uncertainty.
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